HYDROSILYLATION OF TETRASUBSTITUTED OLEFINS

Konrad Oertle and Hansjürg Wetter Central Research Laboratories, Ciba-Geigy AG, CH - 4002 Basel, Switzerland

Summary: Tetrasubstituted olefins are hydrosilylated under very mild conditions with dimethyl- or butylmethylchlorosilane and aluminium chloride as catalyst. Application of this procedure to 2,3-dimethyl-2-butene yields thexyldimethylsilyl chloride, a new silicon based protective group reagent.

The widespread use of hindered triorganosilyl groups such as tert-butyldimethylsilyl ¹, tert-butyldiphenylsilyl ² or triisopropylsilyl ³ derivatives for the purpose of masking hydroxyl functions stems from the stability of the silyl ethers towards a multitude of functional group transformations together with the possibility of their specific and mild removal by either fluoride ion or aqueous acid ⁴. However, the preparation of the corresponding silylating agents - silyl chlorides or silyl triflates - either requires the use of hazardous tert-butyllithium ^{1,2} or is a twostep process ^{3,5}.

In this and the accompanying letter we report on an easy and innocuous preparation of a silylating agent and its usefulness for the protection of various functional groups. In order to obtain the hydrolytic stability desired for silyl ethers 6 the dimethylsilyl group has to carry a third alkyl substituent which is attached to the silicon by a quarternary C-atom. Reaction of chlorosilanes <u>1</u> with tetrasubstituted olefins <u>2</u> to the corresponding chlorosilanes <u>3</u> was therefore investigated.

Hydrosilylation of olefins is known to proceed under a great variety of reaction conditions. The process is initiated not only thermally $7^{a,b}$ but also with catalysts such as radical initiators $7^{a,b}$, bases $7^{a,b}$, Lewis acids (e.g. BCl₃, B(OH)₃, AlCl₃) $7^{a,c}$ or

transition metals (eg. Ni, Pd, Pt, Co, Rh, Ir) $7^{a,b}$. The hydrosilylation of tetrasubstituted olefins with dialkylchlorosilanes has not been described previously 8 . However, we found that tetrasubstituted olefins react with dialkylchlorosilanes in the presence of a catalytic amount of aluminium chloride, as shown in Table 1.

Silanes	Olefins ⁹	Products (% yield ^b)
Ме С1-Si-Н Ме <u>4</u>	Me Me Me	Me Me Me C1-Si (93 %) Me Me Me <u>6</u>
<u>4</u>	Et Et Et	Me Et Et Cl-Si
<u>4</u>	Me Ket	Me Et Et Cl-Si
<u>4</u>	\rightarrow	Me C1-Si Me <u>9</u> (67 %)
Bu Cl-Si-H Me <u>5</u>	$Me \xrightarrow{Me}_{Me} Me$	Bu Me Me C1-Si-+

Table 1: Hydrosilylation of Tetrasubstituted Olefins ^a

^a Reaction conditions: no solvent; 5% to 10% AlCl₃; 25°C.

^b Yields of isolated products purified by distillation. IR, 250 MHz-NMR and MS spectra were fully consistent with the assigned structures.

The preparation of thexyldimethylsilyl chloride $(\underline{6})$ ¹⁰ demonstrates the simplicity of the hydrosilylation reaction: To a mixture of dimethylchlorosilane (10 ml, 92 mmol) and aluminium chloride (680 mg, 5 mmol) was added at 25°C 2,3-dimethyl-2-butene (11 ml, 91 mmol). After stirring for 4 hrs at ambient temperature the reaction mixture was filtered and distilled: 15,2 g (93%) 6 ¹¹.

We propose a mechanism that runs via the two catalytic intermediates 11^{12} and 12.

The second step of the catalytic cycle, the alkyltransfer from aluminium to silicon, is supported by our observation that isobutyldichloroalane $(\underline{13})$ reacts with $\underline{4}$ to produce isobutyldimethylchlorosilane $(\underline{14})$ in 50% yield.

Further studies to corroborate the mechanism are in progress. The application of thexyldimethylsilyl chloride (TDS-Cl) for the protection of functional groups and the stability of the corresponding silyl derivatives are described in the accompanying paper 13.

References and Notes

- 1. Corey, E.J.; Venkateswarlu, A., J. Am. Chem. Soc. 1972, 94, 6190.
- 2. Hanessian, S.; Lavallee, P., Can. J. Chem. 1975, 53, 2975.
- Cunico, R.F.; Bedell, L., J. Org. Chem. 1980, 45, 4797 and references cited therein. Ogilvie, K.K.; Beaucage, S.L.; Entwistle, D.W.; Thompson, E.A.; Quilliam, M.A.; Westmore J.B., J. Carbohydrates, Nucleosides, Nucleotides 1976, 3, 197. Corey, E.J.; Cho, H.; Rücker, C.; Hua, D.H., Tetrahedron Lett. 1981, 22, 3455.
- 4. For recent reviews, see: Greene, T.W., "Protective Groups in Organic Synthesis", Wiley Interscience, 1981. Colvin, E., "Silicon in Organic Synthesis", Butterworths, 1981.
- The readily available (2,4,6-tri-tert-butylphenoxy)dimethylsilyl chloride is not suitable as reagent for the protection of alcohols, see: Manis, P.A.; Rathke, M.W., J. Org. Chem. 1981, 46, 5348.
- Sommer, L.H., "Stereochemistry, Mechanism and Silicon", McGraw-Hill, New York, 1965, pp. 127, 132 and 138.
- For reviews, see: (a) Eaborn, C.; Bott, R.W. in "Organometallic Compounds of the group IV Elements", MacDiarmid, A.G. Ed,; Marcel Dekker, 1968, pp. 105-536. (b) "Comprehensive Organometallic Chemistry", Wilkinson, G.; Stone, F.G.A.; Abee, E.W. Eds.; Pergamon Press, 1982. (c) Finke, U.; Moretto, H., DOS 2.804.204 (1978).
- A thermally resp. radically initiated hydrosilylation of 2,3-dimethyl-2-butene with trichlorosilane is reported to yield thexyltrichlorosilane: Pietrusza, F.W.; Sommer, L.H.; Whitmore, F.C., J. Am. Chem. Soc., 1948, 70, 484. Voronkov, M.G.; Romanova, N.G.; Smirnova, L.G., Chem. Listy 1958, 52, 640; Chem. Abstract 1958, 52, 13615. Voronkov, M.G.; Romanova, N.G.; Smirnova, L.G., Collection Czech. Chem. Comm. 1958, 23, 1013.
- Non commercial olefins were prepared by reductive dimerisation of the corresponding ketones: McMurry, J.E.; Fleming, M.P.; Kees, K.L.; Krepski, L.R., J. Org. Chem. 1978, <u>43</u>, 3255. Lenoir, D., Synthesis 1977, 553.
- The thexyl group = 2,3-dimethyl-2-butyl, using the nomenclature of Brown, H.C. "Boranes in Organic Chemistry", Cornell University Press, 1972.
- 11. Colourless liquid, bp. 55-56°C/10 Torr; ¹H-NMR (250 MHz, CDC1₃): 0,44 (s, 6H, Me₂Si); 0,94 (d,J = 6Hz, 6H, Me₂CH); 0,96 (s, 6H, Me₂C); 1,74³(m, 1H, HC) ppm.
- 12. Based on known AlCl₂ catalysed redistribution and disproportionation reactions of alkylchlorosilanes (ref. 14) it is assumed that "HAlCl₂" is formed by the reaction of HSiClMe₂ with AlCl₃.
- 13. Wetter, Hj.; Oertle, K. Tetrahedron Lett. subsequent paper.
- 14. See reference 7a, pp. 332-341.

(Received in Germany 10 September 1985)